A new integral loss function for Bayesian optimization
نویسندگان
چکیده
We consider the problem of maximizing a real-valued continuous function f using a Bayesian approach. Since the early work of Jonas Mockus and Antanas Žilinskas in the 70’s, the problem of optimization is usually formulated by considering the loss function max f − Mn (where Mn denotes the best function value observed after n evaluations of f ). This loss function puts emphasis on the value of the maximum, at the expense of the location of the maximizer. In the special case of a one-step Bayes-optimal strategy, it leads to the classical Expected Improvement (EI) sampling criterion. This is a special case of a Stepwise Uncertainty Reduction (SUR) strategy, where the risk associated to a certain uncertainty measure (here, the expected loss) on the quantity of interest is minimized at each step of the algorithm. In this article, assuming that f is defined over a measure space (X, λ), we propose to consider instead the integral loss function ∫ X ( f − Mn)+ dλ, and we show that this leads, in the case of a Gaussian process prior, to a new numerically tractable sampling criterion that we call EI (for Expected Integrated Expected Improvement). A numerical experiment illustrates that a SUR strategy based on this new sampling criterion reduces the error on both the value and the location of the maximizer faster than the EI-based strategy.
منابع مشابه
Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کاملComparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches
This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...
متن کاملBayesian Estimation for the Pareto Income Distribution under Asymmetric LINEX Loss Function
The use of the Pareto distribution as a model for various socio-economic phenomena dates back to the late nineteenth century. In this paper, after some necessary preliminary results we deal with Bayes estimation of some of the parameters of interest under an asymmetric LINEX loss function, using suitable choice of priors when the scale parameter is known and unknown. Results of a Monte C...
متن کاملBayesian Sample Size Computing for Estimation of Binomial Proportions using p-tolerance with the Lowest Posterior Loss
This paper is devoted to computing the sample size of binomial distribution with Bayesian approach. The quadratic loss function is considered and three criterions are applied to obtain p-tolerance regions with the lowest posterior loss. These criterions are: average length, average coverage and worst outcome.
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1408.4622 شماره
صفحات -
تاریخ انتشار 2014